Densities and Molar Volumes of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and $\mathbf{M g S O}_{4}$ in Ethanol + Water Mixtures at 15,25 , and $35{ }^{\circ} \mathrm{C}$

Manuela M. Sánchez, Bernardo Domínguez, Raquel R. Raposo, and Andrés Vivo*
Department of Physical Chemistry, University of La Laguna, Tenerife, Spain

Abstract

The densities of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and MgSO_{4} have been determined at 15,25 , and $35^{\circ} \mathrm{C}$ in $\mathrm{EtOH}+\mathrm{H}_{2} \mathrm{O}$. The results have been analyzed using the Redlich equation for the density as a function of the concentration. The apparent molar volumes at infinite dilution have been calculated from the coefficients of the Redlich equation and from the theoretical slopes S_{v} of these mixtures at $25^{\circ} \mathrm{C}$, and results compared and interpreted in terms of the different interactions.

Introduction

There are few measurements of molar volumes of electrolytes in water + organic solvents where the electrolytes show association. Sodium and magnesium sulfates are associated in these mixtures, and the changes of volume due to the formation of ion pairs would be expected to be positive. From a knowledge of the association constants (1) we can determine if the deviations from the limit law behavior are principally due to association.

Experimental Section

Densities of the mixed solvents, water, and the electrolyte solutions were determined using an Anton Paar Model DMA60 oscillating-tube densimeter and a measuring cell (DMA602). The accuracy was estimated as $\pm 5 \times 10^{-6} \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The density measurements were made at $15.00,25.00$, and 35.00 ${ }^{\circ} \mathrm{C}$ in a water ultrathermostat which was maintained within $\pm 0.005^{\circ} \mathrm{C}$ and measured by means of a Beckmann differential thermometer calibrated against a calorimeter thermometer $1{ }^{\circ} \mathrm{C}$ scale in $1 / 200$ divisions, with the tested point at $25 \pm$ $0.001^{\circ} \mathrm{C}$ (NBS). Temperature was controlled in the measuring cell with a DT-100 (Anton Paar) digital precision thermometer. Merck Suprapur $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was recrystallized in conductivity water and dried at $150^{\circ} \mathrm{C}$ under vacuum for two days. Merck $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, analytical reagent grade, was melted at $700^{\circ} \mathrm{C}$ and then dried for several days at $200^{\circ} \mathrm{C}$. Merck (pa quality) absolute ethanol was analyzed for its water content (less than 0.2% by mass), the necessary corrections to the solvent composition of the mixtures being carried out. Masses of the salts were accurate to $\pm 5 \times 10^{-6} \mathrm{~g}$ and those of the solvents to $\pm 0.01 \mathrm{~g}$, and all sample weights were corrected to vacuum. The conductivity water used was of Milli-Q4 quality and showed an average specific conductance below $5 \times 10^{-7} \mathrm{~S} \cdot \mathrm{~cm}^{-1}$ at $25^{\circ} \mathrm{C}$. Fourteen different concentrations of each salt were used, within the dilute range 0.001 $<c \leq 0.2 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ of the aqueous solutions and four mistures in the water-rich region: $10,20,25$, and 30 mass $\%$ EtOH.

Results and Discussion

In the solvent mixtures the density d of the electrolyte solution of concentration c was represented by the Redlich equation

$$
\begin{align*}
d /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right)= & d^{\circ}+A\left[c /\left(\mathrm{mol}^{2} \cdot \mathrm{dm}^{-3}\right)\right]+ \\
& B\left[c /\left(\mathrm{mol} \cdot \mathrm{dm}^{-3}\right)\right]^{3 / 2}+D\left[c /\left(\mathrm{mol} \cdot \mathrm{dm}^{-3}\right)\right]^{2} \tag{1}
\end{align*}
$$

which is based on the theoretical concentration dependence

[^0]

Figure 1. $\phi_{v}{ }^{\circ}$ against w in $w \mathrm{EtOH}+(1-w) \mathrm{H}_{2} \mathrm{O}$: filled symbols, $\mathrm{Na}_{2} \mathrm{SO}_{4} ;$ open symbols, $\mathrm{MgSO}_{4} ; \diamond, 25^{\circ} \mathrm{C}$ (Table 5); $0,15^{\circ} \mathrm{C} ; \square, 25^{\circ} \mathrm{C} ; \nabla, 35^{\circ} \mathrm{C}$ ($\phi_{v}{ }^{\circ}$'s evaluated from eq 3).

Figure 2. b_{v} against w in $w \mathrm{EtOH}+(1-w) \mathrm{H}_{2} \mathrm{O}$: filled symbols, $\mathrm{Na}_{2} \mathrm{SO}_{4}$; open symbols, $\mathrm{MgSO}_{4} ; \diamond, 25^{\circ} \mathrm{C}$ (Table 5); $0,15^{\circ} \mathrm{C} ; \square, 25^{\circ} \mathrm{C} ; \nabla, 30^{\circ} \mathrm{C}\left(b_{\mathrm{v}}{ }^{\circ}\right.$ s evaluated from eq 3).
on the ϕ_{v} and is preferred to Root's equation (2).
In general, the apparent molar volumes ϕ_{v} are extrapolated to zero concentration to yield partial molar volumes at infinite

Table 1. Relative Densities d of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ Solutions in $\mathrm{wt} \mathrm{EtOH}+(1-w) \mathrm{H}_{2} \mathrm{O}$ at 15,25 , and $35{ }^{\circ} \mathrm{C}$, Where w is Mass Fraction

$t=15^{\circ} \mathrm{C}$		$t=25^{\circ} \mathrm{C}$		$t=35^{\circ} \mathrm{C}$		$t=15{ }^{\circ} \mathrm{C}$		$t=25^{\circ} \mathrm{C}$		$t=35^{\circ} \mathrm{C}$	
$\begin{gathered} 10^{3} \mathrm{c}^{4} \\ \left(\mathrm{~mol} \cdot \mathrm{dm}^{-3}\right) \end{gathered}$	$\begin{gathered} d^{b} / \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} 10^{3} \mathrm{c}^{4} \\ \left(\mathrm{~mol} \cdot \mathrm{dm}^{-3}\right) \end{gathered}$	$\begin{gathered} d^{b /} \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-9}\right) \end{gathered}$	$\begin{gathered} 10^{3} \mathrm{c}^{a} \\ \left(\mathrm{~mol} \cdot \mathrm{dm}^{-8}\right) \end{gathered}$	$\begin{gathered} d^{b /} \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} 10^{3} \mathrm{c}^{\mathrm{a}} \\ \left(\mathrm{~mol} \cdot \mathrm{dm}^{-3}\right) \end{gathered}$	$\begin{gathered} d^{b /} \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} 10^{3} c^{a} / \\ \left(\mathrm{mol} \cdot \mathrm{dm}^{-3}\right) \end{gathered}$	$\begin{gathered} \mathrm{d}^{\mathrm{b}} / \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} 10^{3} \mathrm{c}^{a} / \\ \left(\mathrm{mol} \cdot \mathrm{dm}^{-3}\right) \end{gathered}$	$\begin{gathered} \mathrm{d}^{\mathrm{b} /} \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{gathered}$
$w=0$											
0	0.999101	0	0.997047	0	0.994035	79.884	1.009472	71.541	1.007167	79.560	1.004036
1.1679	0.999259	0.99644	0.997178	1.2145	0.994202	99.681	1.012010	98.364	1.009528	99.141	1.006461
5.3839	0.999818	4.9779	0.997693	4.0681	0.994587	122.02	1.014837	121.25	1.012373	121.28	1.009178
10.468	1.000489	9.9597	0.998339	7.7544	0.995071	139.46	1.017057	138.71	1.014546	138.86	1.011331
19.956	1.001733	19.939	0.999621	12.689	0.995692	159.71	1.019594	159.48	1.017127	158.52	1.013749
39.707	1.004308	39.371	1.002142	40.231	0.999129	179.36	1.022054	178.81	1.019505	178.51	1.016179
49.773	1.005606	49.759	1.003414	53.229	1.000795	201.39	1.204809	201.79	1.022320	200.48	1.018847
62.327	1.007225	61.997	1.004956	62.172	1.001871						
$w=0.10$											
0	0.983061	0	0.980437	0	0.976887	59.182	0.990723	119.64	0.995470	117.98	0.991568
1.4746	0.983250	1.4464	0.980619	1.2714	0.977126	78.280	0.993153	136.67	0.997556	136.34	0.993797
4.9049	0.983707	4.8956	0.981065	3.1511	0.977342	97.497	0.995584	156.47	1.000005	155.63	0.996153
9.8113	0.984350	10.026	0.981722	6.3443	0.977765	120.59	0.998497	176.20	1.002425	196.99	1.001150
19.664	0.985646	19.577	0.982945	10.596	0.978300	137.94	1.000642	197.60	1005008		
38.612	0.988080	49.125	0.986695	44.767	0.982579	157.67	1.003107				
49.256	0.989439	97.677	0.992742	77.810	0.986620						
$w=0.20$											
0	0.970728	0	0.966418		0.961363	77.810	0.980460	103.41	0.979135	76.210	0.970765
1.1437	0.970854	1.4476	0.966582	4.3334	0.961992	118.88	0.985455	117.70	0.980829	95.998	0.973133
4.8491	0.971333	5.2944	0.967066	7.9927	0.962419	135.89	0.987513	134.11	0.982797	117.48	0.975702
9.6536	0.971970	11.566	0.967843	11.033	0.962803	154.93	0.989832	153.97	0.985154	34.24	0.977650
19.392	0.973171	19.432	0.968832	23.969	0.964380	137.79	0.992070	174.03	0.987530	153.38	0.979929
38.870	0.975619	38.590	0.971220	38.481	0.966176			194.23	0.989910	173.65	0.982309
48.499	0.976798	48.115	0.972381	46.676	0.967165					193.13	0.984598
60.634	0.978331	60.207	0.973878	60.092	0.968797						
$w=0.25$											
0	0.964269	0	0.958983	0	0.953058	65.443	0.972055	76.341	0.968204	94.983	0.964555
1.4431	0.964461	1.1489	0.959099	1.5144	0.953548	72.202	0.972827	96.038	0.970524	116.80	0.967083
4.8312	0.964888	4.7788	0.959560	2.9056	0.953702	98.102	0.975752	116.97	0.972983	132.84	0.968960
9.5256	0.965461	11.467	0.960384	7.4623	0.954295	125.14	0.978757	133.105	0.974840	151.83	0.971124
19.456	0.966683	19.146	0.961335	9.4993	0.954538	150.81	0.981571	152.76	0.977131	170.82	0.973319
40.556	0.970233	38.222	0.963650	48.835	0.959348	159.84	0.982554	172.27	0.979452	191.91	0.975686
48.265	0.970073	47.832	0.964802	59.321	0.960334	198.97	0.986771	192.25	0.981697		
56.813	0.971063	59.709	0.966222	75.832	0.962296						
$w=0.30$											
0	0.956895	0	0.950679	0	0.944059	75.987	0.966475	76.666	0.959704	75.209	0.952945
1.1763	0.957026	1.2134	0.950831	2.7887	0.944591	100.58	0.969576	94.750	0.961795	95.053	0.955249
4.7798	0.957470	4.9623	0.951277	6.5229	0.945042	109.58	0.970711	115.91	0.964200	114.40	0.957448
10.886	0.958168	11.686	0.952087	10.200	0.945541	120.18	0.972049	131.95	0.966039	131.59	0.959368
18.980	0.959174	18.961	0.952950	21.229	0.946607	128.55	0.973106	151.46	0.968223	150.62	0.961524
39.812	0.961917	38.003	0.955200	38.616	0.948684	180.37	0.979661	169.51	0.970245	169.41	0.963665
47.795	0.962558	47.485	0.956327	48.402	0.950001	199.21	0.982048	190.89	0.972645	190.77	0.965987
63.511	0.964903	59.520	0.957733	59.192	0.951109						

${ }^{a}$ Accuracy in $c, \pm 5 \times 10^{-7} \mathrm{~mol} \cdot \mathrm{dm}^{-3} .{ }^{6}$ Accuracy in $d, \pm 5 \times 10^{-6} \mathrm{~g} \cdot \mathrm{~cm}^{-3}$.
Table 2. Relative Densities d of MgSO_{4} Solutions in w $\mathrm{EtOH}+(1-w) \mathrm{H}_{\mathbf{2}} \mathrm{O}$ at 15, 25, and $\mathbf{3 5}^{\circ} \mathrm{C}$, Where \mathbf{w} is Mass Fraction

$t=15^{\circ} \mathrm{C}$		$t=25^{\circ} \mathrm{C}$		$t=35^{\circ} \mathrm{C}$		$t=15^{\circ} \mathrm{C}$		$t=25^{\circ} \mathrm{C}$		$t=35^{\circ} \mathrm{C}$	
$\begin{gathered} 10^{3} \mathrm{c}^{\mathrm{a}} \\ \left(\mathrm{~mol} \cdot \mathrm{dm}^{-3}\right) \end{gathered}$	$\begin{gathered} d^{b} / \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} 10^{3} \mathrm{c}^{a} / \\ \left(\mathrm{mol} \cdot \mathrm{dm}^{-3}\right) \end{gathered}$	$\begin{gathered} d^{b} / \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} 10^{3} \mathrm{c}^{a} \\ \left(\mathrm{~mol} \cdot \mathrm{dm}^{-3}\right) \end{gathered}$	$\frac{d^{b} /}{\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right)}$	$\begin{gathered} 10^{3} \mathrm{c}^{a} \\ \left(\mathrm{~mol} \cdot \mathrm{dm}^{-3}\right) \end{gathered}$	$\begin{gathered} d^{b} / \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} 10^{3} \mathrm{c}^{a} / \\ \left(\mathrm{mol} \cdot \mathrm{dm}^{-3}\right) \end{gathered}$	$\begin{gathered} d^{b} / \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} 10^{3} \mathrm{c}^{a} / \\ \left(\mathrm{mol} \cdot \mathrm{dm}^{-3}\right) \end{gathered}$	$\begin{gathered} d^{b} / \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{gathered}$
$w=0$											
1.3995	0.999278	1.4389	0.997228	0.99202	0.994159	79.688	1.008934	79.323	1.006724	79.323	1.003673
4.9744	0.999732	4.9453	0.997667	2.9625	0.994405	99.901	1.011373	99.120	1.009092	98.763	1.005992
9.9568	1.000355	9.9250	0.998284	6.9260	0.994895	122.25	1.014066	121.42	1.011766	121.07	1.008639
19.784	1.001580	19.748	0.999502	9.8916	0.995257	139.82	1.016188	138.81	1.013827	138.44	1.010699
39.915	1.004074	39.667	1.001928	39.953	0.998936	159.89	1.018575	158.67	1.016192	158.98	1.013104
49.612	1.005270	49.150	1.003071	49.300	1.000059	179.60	1.020917	179.18	1.018602	178.28	1.015380
62.299	1.006811	61.973	1.004632	61.899	1.001588	202.27	1.023603	201.74	1.021276	199.55	1.017853
$w=0.10$											
1.2896	0.983218	1.1485	0.980585	0.97348	0.977002	77.960	0.992574	77.994	0.989884	118.08	0.991026
4.7999	0.983665	4.8870	0.981036	4.8506	0.977485	97.756	0.994964	97.596	0.992222	135.83	0.993120
9.7301	0.984278	9.7368	0.981639	9.7636	0.978088	109.56	0.996377	119.70	0.994838	156.29	0.995504
19.532	0.985495	19.489	0.982837	19.399	0.979243	137.02	0.999650	136.65	0.996821	175.41	0.997721
39.070	0.987873	39.178	0.985214	48.491	0.982761	156.63	1.001966	156.03	0.999133	197.65	1.000302
48.763	0.989080	48.455	0.986356	77.529	0.986232	177.00	1.004383	176.36	1.001515		
61.385	0.990587	61.129	0.987859	97.033	0.988558	196.96	1.006720	198.01	1.004038		
$w=0.20$											
1.3455	0.970892	1.3587	0.966577	1.2462	0.961533	76.986	0.979926	96.273	0.977803	133.58	0.977072
4.7843	0.971319	4.8083	0.967006	5.0729	0.961968	96.499	0.982180	117.97	0.980317	153.03	0.979275
9.6129	0.971897	10.523	0.967685	9.5691	0.962514	118.07	0.984750	134.87	0.982270	171.86	0.981403

Table 2. (Continued)

$t=15^{\circ} \mathrm{C}$		$t=25^{\circ} \mathrm{C}$		$t=35^{\circ} \mathrm{C}$		$t=15^{\circ} \mathrm{C}$		$t=25^{\circ} \mathrm{C}$		$t=35^{\circ} \mathrm{C}$	
$\begin{gathered} 10^{3} \mathrm{c}^{a} \\ \left(\mathrm{~mol} \cdot \mathrm{dm}^{-3}\right) \end{gathered}$	$\begin{gathered} d^{b /} \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} 10^{3} \mathrm{c}^{a} \\ \left(\mathrm{~mol} \cdot \mathrm{dm} \mathrm{~m}^{-3}\right) \end{gathered}$	$\begin{gathered} d^{b} / \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} 10^{3} \mathrm{c}^{a} / \\ \left(\mathrm{mol} \cdot \mathrm{dm} m^{-3}\right) \end{gathered}$	$\begin{gathered} d^{b} / \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} 10^{8} c^{a /} \\ \left(\mathrm{mol} \cdot \mathrm{dm} \mathrm{~m}^{-3}\right) \end{gathered}$	$\begin{gathered} d^{b} / \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} 10^{3} \mathrm{c}^{\mathrm{a}} / \\ \left(\mathrm{mol} \cdot \mathrm{dm}^{-3}\right) \end{gathered}$	$\frac{d^{b}}{\left(\mathrm{~g} \cdot \mathrm{~cm}^{-3}\right)}$	$\begin{gathered} 10^{3} c^{a} / \\ \left(\mathrm{mol} \cdot \mathrm{dm} \mathrm{~m}^{-3}\right) \end{gathered}$	$\begin{gathered} d^{b} / \\ \left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{gathered}$
$w=0.20$											
20.258	0.973202	21.498	0.969003	19.053	0.963664	135.32	0.986724	154.12	0.984506	193.54	0.983902
38.789	0.975382	48.016	0.972148	48.382	0.967146	154.78	0.988958	174.64	0.986857		
48.219	0.976575	60.227	0.973575	95.539	0.972694	194.79	0.993550	197.02	0.989410		
60.623	0.977987	76.936	0.975548	117.02	0.975176						
$w=0.25$											
1.1296	0.964417	1.1015	0.959115	1.4227	0.953223	117.25	0.977919	76.546	0.967919	75.790	0.961981
4.6560	0.964837	4.7223	0.959562	4.7265	0.953635	134.26	0.979834	95.804	0.970117	94.718	0.964152
9.4886	0.965426	9.5630	0.960101	9.4866	0.954204	153.72	0.982038	116.73	0.972506	116.02	0.966570
19.202	0.966579	20.460	0.961381	18.893	0.955339	172.39	0.984162	133.70	0.974430	132.98	0.968532
48.044	0.969983	38.273	0.963481	37.771	0.957570	193.83	0.986539	153.77	0.976658	151.38	0.970583
76.740	0.973315	47.534	0.964565	47.339	0.958642			172.21	0.978779	170.89	0.972768
95.990	0.975493	59.892	0.965999	59.220	0.960073			194.84	0.981270	190.84	0.975001
$w=0.30$											
1.0864	0.957022	1.2605	0.950823	1.2598	0.944220	76.043	0.965587	94.685	0.961492	93.994	0.954825
4.6498	0.957454	4.7369	0.951233	4.6109	0.944634	95.268	0.967770	115.36	0.963765	114.90	0.957184
9.4832	0.957989	9.5883	0.951811	9.3396	0.945166	116.45	0.970126	132.81	0.965720	130.98	0.958917
21.687	0.959402	18.970	0.952894	18.786	0.946229	132.75	0.971910	151.78	0.967804		
38.230	0.961326	46.947	0.956080	47.015	0.949659	152.08	0.974081	171.96	0.970016		
47.174	0.962335	59.338	0.957504	58.610	0.950831	171.02	0.976178				
59.412	0.963730	75.920	0.959382	75.017	0.952675	193.05	0.978561				

${ }^{a}$ Accuracy in $c, \pm 5 \times 10^{-7} \mathrm{~mol} \cdot \mathrm{dm}^{-3} .{ }^{b}$ Accuracy in $d, \pm 5 \times 10^{-6} \mathrm{~g} \cdot \mathrm{~cm}^{-3}$.
Table 3. Coefficients A, B, and D of Eq 1

w	$t=15^{\circ} \mathrm{C}$			$t=25^{\circ} \mathrm{C}$			$t=35^{\circ} \mathrm{C}$		
	$A^{\text {a }}$	$10^{3} B^{b}$	$10^{3} D^{c}$	$A^{\text {a }}$	$10^{3} B^{b}$	$10^{3} D^{c}$	$A^{\text {a }}$	$10^{3} B^{b}$	$10^{3} D^{6}$
$\mathrm{Na}_{2} \mathrm{SO}_{4}$									
0.10	0.1325	-11.21	-5.967	0.1304	-14.61	2.314	0.1280	-14.56	6.438
0.20	0.1285	-10.10	-7.397	0.1274	-11.21	-7.461	0.1247	-6.201	-10.96
0.25	0.1291	-44.55	19.38	0.1278	-29.06	17.45	0.1265	-39.08	36.98
0.30	0.1268	-4.794	-8.181	0.1224	-16.35	-1.331	0.1167	-1.765	-11.05
MgSO_{4}									
0.10	0.1266	-18.09	7.609	0.1251	-16.08	6.383	0.1228	-5.529	-9.867
0.20	0.1239	-17.08	4.087	0.1218	-11.60	0.2899	0.1222	-9.614	-8.547
0.25	0.1247	-31.24	20.44	0.1190	-5.418	16.10	0.1224	-17.63	11.72
0.30	0.1181	-12.92	-0.7942	0.1184	-13.88	-1.683	0.1224	-28.13	10.01

${ }^{a}$ Standard deviation $\sigma(A)=2 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot{ }^{6}$ Standard deviation $\sigma(B)=7 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~mol}^{-3 / 2} \cdot \mathrm{dm}^{3 / 2} .{ }^{c}$ Standard Deviation $\sigma(D)=9 \times 10^{-4}$ $\mathrm{kg} \cdot \mathrm{mol}^{-2} \cdot \mathrm{dm}^{3}$.
dilution $\phi_{\mathrm{v}}{ }^{\circ}$, using the Redlich-Meyer equation (3)

$$
\begin{equation*}
\phi_{\mathrm{v}}-S_{\mathrm{v}} \mathrm{c}^{1 / 2}=\phi_{\mathrm{v}}^{0}+b_{\mathrm{v}} c \tag{2}
\end{equation*}
$$

where S_{v} is the Debye-Hückel limiting slope and b_{v} is an empirical parameter depending on the nature of the electrolyte. With aqueous solutions, $\phi_{\mathrm{v}}{ }^{\circ}$ values are usually obtained by a direct extrapolation to zero concentration of the plots according to eq 2 . This procedure cannot be used for the ethanol + water systems because all the solvent properties involved in a calculation of S_{v} are not known. For this reason, alternative methods must be used to obtain the $\phi_{\mathrm{v}}{ }^{\circ}, S_{\mathrm{v}}{ }^{*}$, and b_{v} values for both $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and MgSO_{4} in the different mass percent EtOH mixtures.

By combining the definition of the apparent molar volume $\left[\phi_{\mathrm{v}}=\left[-10^{3}\left(d-d^{\circ}\right)+M_{2} c\right] / d^{\circ} c\right]$ with eq 2 , the density of an electrolyte solution can be determined, eq 1 , by using the additivity principle, $\phi_{\mathrm{v}}{ }^{\circ}$'s and S_{v} 's are additive, and b_{v} 's can be additive for this kind of system (4), with
$\phi_{\mathrm{v}}{ }^{\circ}=\left(M_{2}-10^{3} \mathrm{~A}\right) / d^{\circ} ; \quad S_{\mathrm{v}}{ }^{*}=-10^{3} \mathrm{~B} / d^{\circ} ; \quad b_{\mathrm{v}}=-10^{3} \mathrm{D} / d^{\circ}$
Tables 1 and 2 give the concentrations and the experimental densities for the two salts in the various ethanol + water mixtures. Table 3 gives the coefficients of eq 1 (A, B, and D were obtained by a curve-fitting procedure), but the parameters from eq 3 evaluated by this method have uncertainties

Table 4. Dielectric Constant \& and Isothermal Compressibility β of $w \mathrm{EtOH}+(1-w) \mathrm{H}_{2} \mathrm{O}$ Mixtures

$t /{ }^{\circ} \mathrm{C}$	w	ϵ	$10^{12} \beta / \mathrm{Pa}$
15	0	82.04^{a}	4.17^{c}
25	0	78.36^{a}	4.561^{c}
25	0.10	72.89^{b}	4.251^{d}
25	0.20	67.05^{b}	4.138^{d}
25	0.25	64.11^{b}	4.198^{d}
25	0.30	61.15^{b}	4.353^{d}
35	0	74.85^{a}	4.442^{c}

[^1]Table 5. $\phi_{v}{ }^{\circ}, S_{v}$ (Theoretical Slope), and b_{v} of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and MgSO_{4} in $\mathbf{w E t O H}+(1-w) \mathrm{H}_{2} \mathrm{O}$ Mixtures, Calculated by a Direct Extrapolation to Zero Concentration of the Plots According to Eq 2

$t /{ }^{\circ} \mathrm{C}$	ω	$\mathrm{Na}_{2} \mathrm{SO}_{4}$			MgSO_{4}		
		$\begin{gathered} \phi_{v^{\circ 0} /}{ }^{\circ} / \\ \left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} S_{\mathrm{V}}^{\mathrm{b}} / \\ \left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-3 / 2} \cdot \mathrm{dm}^{3 / 2}\right) \end{gathered}$	$\begin{gathered} b_{\mathrm{v}}{ }^{\mathrm{a}} / \\ \left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-2} \cdot \mathrm{dm}^{3}\right) \end{gathered}$	$\begin{gathered} \phi_{\mathrm{v}^{\circ \mathrm{a}}} \\ \left(\mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} S_{\mathrm{v}}^{\mathrm{b}} / \\ \left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-2} \cdot \mathrm{dm}^{3}\right) \end{gathered}$	$\begin{gathered} b_{\mathrm{v}}^{\mathrm{a} /} \\ \left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-2} \cdot \mathrm{dm}^{3}\right) \end{gathered}$
15	0	8.3	8.871	13.1	-7.0	13.52	0.74
25	0	10.6	9.670	10.0	-5.9	14.89	-2.3
25	0.10	10.7	11.2	14.2	-9.3	17.1	23.6
25	0.20	12.5	12.8	21.6	-9.7	19.6	36.9
25	0.25	17.2	13.6	7.9	-13.7	20.9	82.6
25	0.30	12.6	14.3	70.2	-0.11	22.1	-5.6
35	0	8.7	10.63	35.0	-5.2	16.37	-6.0

The method that one must use to evaluate the parameters is to calculate the approximate theoretical slopes S_{v} for these mixtures. Since we do not know the pressure dependence of the dielectric constants, we can assume that they are the same as those of water; the isothermal compressibility coefficients of the mixtures at $25^{\circ} \mathrm{C}$ are known (7) (Table 4). There are differences between values of $\phi_{v}{ }^{\circ}$ (Figure 1) and b_{v} values (Figure 2) obtained by both methods, because even considering the uncertainties, we cannot apply the additivity principle when ionic association exists (6). The values of $\phi_{v}{ }^{\circ}$ and b_{v} evaluated from eq 3 are not as accurate as those of Table 5 , even considering the approximate values, $(\delta \ln \epsilon / \delta P)_{T}$, used in this last one.

The apparent molar volumes at infinite dilution of both 1-2 and 2-2 electrolytes increase with temperature and with ethanol concentration in the mixed solvent, and the b_{v} values show positive deviations from the limit law of Redlich.

The properties of an ethanol + water mixture containing ~ 25 mass \% EtOH are clearly complicated, as revealed by conductivities of salt solutions (8), diffusion coefficients (9), and permittivities (10). These complexities are also revealed in the properties reported here. There is a type of interaction to consider that can possibly cause the deviations from the limiting law. The thermodynamic association constants are in the range from 12 to 25 and from 210 to 1300 for $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and MgSO_{4} solutions at $25^{\circ} \mathrm{C}$, respectively, from aqueous solutions to a 30 mass $\% \mathrm{EtOH}$ mixture (1), and they affect the b_{v} values. On the other hand, the temperature dependence on $\phi_{V}{ }^{\circ}$'s can be looked at in terms of ionic solvation (11),
raising the temperature, decreasing the ionic solvation, and increasing the ion pairing the greater the $\phi_{\mathrm{v}}{ }^{\circ}$'s. In short, the $\phi_{\mathrm{v}}{ }^{\circ}$'s seem to represent the true volumes of the electrolytes, and the b_{v} 's for these electrolytes take into account the ion pairs, principally in the MgSO_{4} solutions.

Literature Cited

(1) Quintana, C.; Llorente, M. L.; Sanchez, M. M.; Vivo, A. J. Chem. Soc., Faraday Trans 1 1986, 82, 3307.
(2) Root, V. C. J. Am. Chem. Soc. 1933, 55, 850.
(3) Redlich, O.; Meyer, D. M. Chem. Rev. 1964, 64, 221.
(4) Millero, F. J. In Structure and Transport Processes in Water and Aqueous Solutions; Horne, R. A., Ed.; Wiley-Interscience: New York, 1971; Chapter 13, p 519.
(5) Padova, J. J. Phys. Chem. 1963, 39, 2599. Bateman, R. L. J. Am. Chem. Soc. 1949, 71, 2291.
(6) Millero, F. J. Chem. Rev. 1971, 71, 147.
(7) Kiyohara, O.; Benson, G. C. J. Solution Chem. 1981, 4, 281.
(8) Vivo, A.; Esteso, M. A.; Llorente, M. L.; Dominquez, B. An. Quim. 1981, 77, 204.
(9) Arevalo, A.; Tejera, E.; Vivo, A. An. Quim. 1974, 70, 7.
(10) Barthel, J. I Colloquium on Solution Chemistry, April, 1992; University of La Laguna: Tenerife, Spain, 1992.
(11) Pogue, R.; Atkinson, G. J. Chem. Eng. Data 1988, 33, 370.
(12) Owen, B. B.; Miller, R. C.; Milner, C. E.; Cogan, H. L. J. Phys. Chem. 1961, 65, 2065.
(13) Akerlöf, G. J. Am. Chem. Soc. 1932, 54, 4125.
(14) Diaz Peña, M.; McGlashan, M. L. Trans. Faraday Soc. 1959, 55, 2018.
(15) Smith, L. B.; Keyes, F. G. Proc. Am. Acad. Arts Sci. 1934, 69, 285.

Received for review August 10, 1993. Revised January 4, 1994. Accepted February 14, 1994.

- Abstract published in Advance ACS Abstracts, April 1, 1994.

[^0]: * To whom correspondence should be addressed.

[^1]: ${ }^{a}$ Reference 12. ${ }^{6}$ Interpolated data, ref 13. Standard deviation $\sigma(D)=0.07$. ${ }^{\text {c }}$ Reference 14 instead of the usual data reported from refs 3 and 15. ${ }^{d}$ Interpolated data, ref 7. Standard deviation $\sigma(\beta)=$ $1.7 \times 10^{-13} \mathrm{~Pa}^{-1}$.
 in $\phi_{\mathrm{v}}{ }^{\circ}$ of $\pm 2 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$, in $S_{\mathrm{v}}{ }^{*}$ of $\pm 8 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-3 / 2} \cdot \mathrm{dm}^{3 / 2}$, and in b_{v} of $\pm 10 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-2} \cdot \mathrm{dm}^{3}$. Besides this method assumes $S_{\mathrm{v}}{ }^{*}$ to be independent of the nature of the electrolyte, which is not strictly true. For these reasons $\phi_{v}{ }^{\circ}$ values obtained are not as accurate as those which could be obtained by a direct extrapolation to zero concentration of the plots according to eq 2. Although a large amount of data are available in aqueous solution, only little is known on ethanol + water systems. These studies (5) measured the density of several salts in these mixtures, but they used Masson's equation to obtain $\phi_{\mathrm{v}}{ }^{\circ}$ values. Extrapolations to infinite dilution using this equation are unreliable (6).

